Movable algebraic singularities of second-order ordinary differential equations

نویسنده

  • G. Filipuk
چکیده

Any nonlinear equation of the form y′′ = ∑N n=0 an(z)y n has a (generally branched) solution with leading order behaviour proportional to (z − z0) about a point z0, where the coefficients an are analytic at z0 and aN (z0) 6= 0. We consider the subclass of equations for which each possible leading order term of this form corresponds to a one-parameter family of solutions represented near z0 by a Laurent series in fractional powers of z−z0. For this class of equations we show that the only movable singularities that can be reached by analytic continuation along finite-length curves are of the algebraic type just described. This work generalizes previous results of S. Shimomura. The only other possible kind of movable singularity that might occur is an accumulation point of algebraic singularities that can be reached by analytic continuation along infinitely long paths ending at a finite point in the complex plane. This behaviour cannot occur for constant coefficient equations in the class considered. However, an example of R. A. Smith shows that such singularities do occur in solutions of a simple autonomous second-order differential equation outside the class we consider here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations

  In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems    

متن کامل

Algorithmic Reduction and Rational General Solutions of First Order Algebraic Differential Equations

First order algebraic differential equations are considered. An necessary condition for a first order algebraic differential equation to have a rational general solution is given: the algebraic genus of the equation should be zero. Combining with Fuchs’ conditions for algebraic differential equations without movable critical point, an algorithm is given for the computation of rational general s...

متن کامل

Finite time blow-up in dynamical systems

A new method to detect finite-time blow-up in systems of ordinary differential equations is presented. This simple algorithmic procedure is based on the analysis of singularities in complex time and amounts to checking the real-valuedness of the leading order term in the asymptotic series describing the behavior of the general solution around movable singularities. Illustrative examples and an ...

متن کامل

Computation of All Rational Solutions of First-Order Algebraic ODEs

In this paper, we consider the class of first-order algebraic ordinary differential equations (AODEs), and study their rational solutions in three different approaches. A combinatorial approach gives a degree bound for rational solutions of a class of AODEs which do not have movable poles. Algebraic considerations yield an algorithm for computing rational solutions of quasilinear AODEs. And fin...

متن کامل

Painlev e-Calogero correspondence

The so called “Painlevé-Calogero correspondence” relates the sixth Painlevé equation with an integrable system of the Calogero type. This relation was recently generaized to the other Painlevé equations and a “multi-component” analogue. This paper reviews these results. 1 Historical background It was at the beginning of the twentieth century that Painlevé discovered what are nowadays called the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008